5. Propositional and Predicate Logic

CS 3030 Lecture Notes
Yan Shi
UW-Platteville

Read: Textbook Chapter 7
What is Logic?

- **Reasoning** about the **validity** of arguments.

- An argument is valid if its conclusions follow logically from its premises – even if the argument doesn’t actually reflect the real world:

 — All lemons are blue
 — Mary is a lemon

 \[\text{Premises}\]

 — Therefore, Mary is blue.

 \[\text{Conclusion}\]

- **Truth values**: true/false.

 — fundamental units of logic.
Logical Operators

- And \(\land \) (conjunction)
- Or \(\lor \) (disjunction)
- Not \(\neg \)
- Implies \(\rightarrow \) (if... then... / implies)
- Iff \(\leftrightarrow \) (if and only if)

The order of precedence:

\([(), \neg, \land, \lor, \rightarrow, \leftrightarrow]\)
Translating between English and Logic

- Facts and rules need to be translated into logical notation.
 - It is Raining and it is Thursday:
 - \(R \land T \)
 - R means “It is Raining”, T means “it is Thursday”.

- More complex sentences need predicates of property(object)
 - It is raining in New York:
 - \(R(N) \)
 - Could also be written \(N(R) \), or even just R.

- **granularity**: It is important to select the correct level of detail for the concepts you want to reason about.
Guideline to Translation

- Simple declarative sentence as atomic propositions
 - Alice is happy: H(A) or simply P
- Identify connecting words such as and, but, or, if...then, iff, just in case, unless, only if, when, etc. Translate them into logical operators.
- Determine the order. Use parenthesis if necessary.
Exercise

- Translate the following sentence to logic:
 - Bob stayed up late last night.
 - It is not the case that Alice isn’t sick.
 - Chris is singing but David isn’t listening.
 - It is not true that Alice is sick and Chris is singing.
 - Alice is sick and Bob stayed up late last night or Chris is singing.
 - If Alice isn’t sick and Chris is singing, David is listening.
 - If Alice isn’t sick, Chris is singing, and vice versa.
 - I only eat a pizza and a burger when I am very hungry!
 - Whenever Chris sings, David listens.
 - Whenever he eats burger that have pickles, he ends up either asleep at his desk or singing loud songs.
Truth Table

- Tables that show truth values for all possible inputs to a logical operator.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>~A</td>
<td>A&B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

- A truth table shows the semantics of a logical operator.
Complex Truth Tables

- We can produce truth tables for complex logical expressions, which show the overall value of the expression for all possible combinations of variables:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A ∧ (B ∨ C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

- A truth table for n variables will have 2^n lines.
Tautology

- **Tautology**: an expression that is true under any interpretation.
 - A is a tautology: this is written as $\vdash A$
 - $A \lor \neg A$
 - $A \rightarrow A$

- **Contradictory**: an expression which is false under any interpretation. (\bot)

- An expression is **satisfiable** if they are true under some interpretation.
Equivalence

- Two expressions are equivalent if they always have the same logical value under any interpretation:
 - $A \land B \equiv B \land A$

- Equivalences can be proven by examining truth tables.
Some Useful Equivalences (1)

- $A \lor A \equiv A$
- $A \land A \equiv A$
- $A \land (B \land C) \equiv (A \land B) \land C$ \hspace{1cm} (associative)
- $A \lor (B \lor C) \equiv (A \lor B) \lor C$ \hspace{1cm} (associative)
- $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ \hspace{1cm} (distributive)
- $A \land (A \lor B) \equiv A$
- $A \lor (A \land B) \equiv A$

- $A \land \text{true} \equiv A$
- $A \land \text{false} \equiv \text{false}$
- $A \lor \text{true} \equiv \text{true}$
- $A \lor \text{false} \equiv A$
Some Useful Equivalences (2)

- \(A \lor B \equiv \neg(\neg A \land \neg B) \)
- \(A \land B \equiv \neg(\neg A \lor \neg B) \)

 DeMorgan’s Laws!

- \(A \rightarrow B \equiv \neg A \lor B \)
- \(A \leftrightarrow B \equiv \neg(\neg(\neg A \lor B) \lor \neg(\neg B \lor A)) \)

 This means we don’t need \(\rightarrow \) and \(\leftrightarrow \) symbols at all!

- Any binary logical operator can be expressed using \(\neg \) and \(\lor \).

- We can use equivalences to simplify logical expressions:

 \(\neg (C \land D) \lor ((C \land D) \land E) \)
Propositional Logic

- Propositional logic is a logical system.
- It deals with propositions.
- Propositional Calculus is the language we use to reason about propositional logic.

Syntax:
- \(\Sigma = \{ \text{true, false, } \neg, \rightarrow, (,), \land, \lor, \iff, p_1, p_2, \ldots, p_n, \ldots \} \) : set of legal symbols
- A sentence in propositional logic is called a well-formed formula (wff).

Semantics:
- Defined by truth tables: “what does a wff mean?”
- \(P \land Q \) means “true when \(P \) is true and \(Q \) is true”
Deduction

- The process of deriving a conclusion from a set of assumptions.

- If we deduce a conclusion C from a set of assumptions, we write:
 \[
 \{A_1, A_2, \ldots, A_n\} \vdash C
 \]

- If C can be concluded without any assumptions, we write:
 \[
 \vdash C
 \]

- Use a set of **inference rules** to perform deduction.
Inference Rules

- **∧-Introduction:**
 \[
 \begin{array}{c}
 A \\
 \hline
 B \\
 \end{array}
 \]
 \[
 A \land B
 \]
 Given A and B, we can deduce A∧B.

- **∧-Elimination:**
 \[
 \begin{array}{cc}
 A \land B & A \land B \\
 \hline
 A & B \\
 \end{array}
 \]
 Given A∧B, we can deduce A and we can deduce B.

- **∨-Introduction:**
 \[
 \begin{array}{c}
 A \\
 \hline
 \end{array}
 \]
 \[
 A \lor B
 \]
 Given A, we can deduce the disjunction of A with any expression.
Inference Rules

- **Introduction:**

 A

 ...

 \[\underline{C} \]

 A \rightarrow C

 If in carrying out a proof we start from an assumption A and derive a conclusion C, then we can deduce A \rightarrow C.

- **Elimination** (Modus Ponens):

 A A \rightarrow B

 \[\underline{B} \]

 B

 If A is true and A implies B, then we can deduce B is true.
Inference Rules

- **Reductio Ad Absurdum** (proof by contradiction):

 \[\neg A \]

 \[\vdash \bot \]

 \[A \]

If we assume A is false and this leads to a contradiction, then we can deduce that A is true.

- **\(\neg\neg\) Elimination**:

 \[\neg\neg A \]

 \[A \]

 If we have a sentence that is negative twice, we can conclude that the sentence itself.
Deduction Example

- \{A \land B\} \vdash A \lor B
- \{P, P \rightarrow Q\} \vdash P \land Q
- \vdash (\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)

\[
\begin{array}{c}
\neg A \\
\neg A \rightarrow B \\
\hline
B \\
\neg B \\
\hline
B \\
B \rightarrow \bot \\
\hline
\bot \\
\hline
A \\
\hline
\neg B \rightarrow A
\end{array}
\]

assumptions
modus ponens
rewriting \neg B
modus ponens
reductio ad absurdum
\rightarrow introduction
\rightarrow introduction
Deduction Theorem

- if \(A \cup \{B\} \vdash C \), then \(A \vdash (B \rightarrow C) \)
- if \(A \vdash (B \rightarrow C) \), then \(A \cup \{B\} \vdash C \)

- “If it is sunny and I am energetic, I will go hiking.” is the same as “When it is sunny, I will go hiking if I am energetic.”
- can make propositional logic proof easier:
 - Prove \(\{A \rightarrow B, B \rightarrow C\} \vdash A \rightarrow C \)
 - Prove \(\{A \rightarrow B\} \vdash A \rightarrow (C \rightarrow B) \)
Exercises

- \{P \land Q \rightarrow R, Q \rightarrow P, Q\} \vdash R
- \{P \rightarrow Q, Q \rightarrow R\} \vdash P \rightarrow Q \land R
- \{P \rightarrow Q, \neg Q\} \vdash \neg P
- \vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (C \rightarrow D) \rightarrow (A \rightarrow D))

Predicate Calculus

- Limitation of propositional calculus: no *properties* of objects and *relationships* between objects in propositions
 ➜ Use predicates!

- **Predicates:**
 - *property*(object): New York is raining: R(N)
 - *relationship*(objects): I like cheese: L(me, cheese)

- **Functions:** f(x1,x2,...,xn)
 - My mom likes cheese: L(m(me), cheese)

- A *predicate* with variables can be made a *proposition* by:
 - assign a value to the variable, or
 - quantify the variable using a *quantifier*
Quantifiers

- **Universal quantifier:** ∀ (for all)
 - everybody likes cheese: ∀x P(x) → L(x,C)

- **Existential quantifier:** ∃ (there exists)
 - someone likes cheese: ∃x L(x, C)

- The quantifiers have higher precedence than all logical operators.

- We can combine quantifiers:
 - everyone likes something: ∀x ∃y L(x,y)

- Relationships between ∀ and ∃:
 - ∀x L(x,C) → ∃x L(x,C)
 - ∃x ≡ ¬ ∀x ¬. e.g., ∃x L(x, C) ≡ ¬ ∀x ¬ L(x, C)

- Bound and Free Variables:
 \[(\forall x)(P(x, y, z) \to (\exists y)(Q(y, z))) \]
 - bound free bound free
First-Order Predicate Logic (FOPL)

- FOPL: The quantifiers can be applied to individuals.
- SOPL: Quantify over predicates, functions and sets of variables

- Term:
 - constant
 - variable
 - $f(x_1, \ldots, x_n)$, if x_1, \ldots, x_n are all terms.

- atomic formula: wff in the form of $P(x_1, \ldots, x_n)$.
- well-formed formula (wff): a sentence
 - contains predicates, quantifiers and variables
FOPL Summary

- Syntax:
 - terms
 - quantifiers
 - wff

- Semantics:
 - world has infinite set of objects
 - properties and relations over objects
 - connectives defined by truth table

- Deduction:
 - start with same rules as for propositional logic
 - add natural deduction rules for ∀, ∃
Exercises

- Everybody likes somebody
- Nobody likes everybody.
- Someone likes everyone.
- Everyone has a mother.
- Only snakes and lizards live in the desert.
- Oranges and lemons are citrus fruits.

- \(\exists \) almost always goes with \(\land \), \(\forall \) with →
Properties of a Logic System

- **Axiom**: a fundamental truth \((A \rightarrow (B \rightarrow A))\)
- **Theorem**: can be proved by the rules of deductions from axioms \((\vdash A)\)
- **Sound**: every theorem is a tautology.
- **Complete**: every tautology is a theorem.
- **Decidable**: it is possible to produce an algorithm that will determine whether any wff is a theorem.
- **Monotonic**: a valid proof cannot be made invalid by adding additional premises or assumptions.
 - If we can prove \(\{A, B\} \vdash C\), then we can also prove \(\{A, B, X, Y\} \vdash C\)
Properties of Propositional Logic and FOPL

<table>
<thead>
<tr>
<th></th>
<th>Propositional</th>
<th>FOPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Decidable</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Monotonic</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Abduction and Inductive Reasoning

- **Deductive reasoning:**
 - start from known facts, derive conclusions using sound rules

- **Inductive reasoning:**
 - reasoning from what we've seen before: “I've never seen a crow that isn't black and I've seen a lot of crows, so I assume all crows are black.”
 - even though it's not always correct, it's certainly a powerful tool

- **Abduction:**
 - \(\{B, A \rightarrow B\} \vdash A \)
 - similar to modus pones but is not logically sound.
 - however, provide a model that works reasonably well in the real world ➔ guess the cause of an observation.
Summary

- Logic:
 - validity vs. truth value
 - reasoning
 - translate English into logic
 - syntax, semantics, proof system
- Propositional logic:
 - truth table
 - natural deduction
 - simple, but inadequate for many problems
- Predicate logic:
 - function, quantifiers
 - much more expressive, harder to work with
- Soundness, completeness, decidability, monotonicity
- deduction, induction, abduction